什么医院治疗白癜风效果最好 https://disease.39.net/bjzkbdfyy/231017/m2i2zp0.html导语
微积分是人类历史上的伟大思想成就之一,也是数学领域不可或缺的一个重要分支。如果没有微积分,人类就不可能发明电视、微波炉、移动电话、GPS、激光视力矫正手术、孕妇超声检查,也不可能发现冥王星、破解人类基因组、治疗艾滋病,以及弄明白如何把首歌曲装进口袋里。微积分对当今和未来的科技发展有怎样的影响?尤其是会怎样影响日益深入的各类复杂系统研究?著名数学家、小世界网络模型提出者史蒂夫·斯托加茨,在他的新书《微积分的力量》中,梳理了微积分发展的历史脉络,并展望了微积分方法与非线性动力学在多个交叉领域的应用前景。本文摘自《微积分的力量》第11章《微积分的未来》。
史蒂夫·斯托加茨
作者
目录(本篇)
一、微积分的未来
二、DNA的缠绕数
五、混沌
六、庞加莱图
七、走上战场的非线性
八、微积分与计算机联盟
九、复杂系统与高维诅咒
十、计算机、人工智能和洞察力之谜
微积分的未来
本章的标题(微积分的未来)可能会让那些认为微积分是明日黄花的人感到惊讶。它怎么会有未来呢?它现在已经结束了,不是吗?在数学圈,你常会吃惊地听到类似的话。根据这种说法,得益于牛顿和莱布尼茨取得的突破,微积分轰轰烈烈地开始发展。他们的发现在18世纪激发了人们淘金热般的心态,有趣且近乎疯狂的探索活动成为这一时期的标志性特征,无穷这个“石巨人”也像脱缰的野马般肆意狂奔。数学家由此收获了惊人的成果,但谬论和混乱也随之而来。所以,19世纪的那几代数学家表现得更加严谨。他们把“石巨人”赶回了笼中,消除了微积分中的无穷大和无穷小,巩固了这个学科的基础,最终阐明了极限、导数、积分和实数的真正含义。到20世纪前后,他们的清理工作画上了句号。
在我看来,这种关于微积分的看法太狭隘了。微积分不只是牛顿、莱布尼茨及其继任者的研究成果,它开始的时间还要早得多,如今依然在壮大。对我来说,微积分可以由它的信条来定义:在解决关于任意连续体的难题时,先把它切分成无穷多个部分,然后一一求解,最后通过把各个部分的答案组合起来去解决原始的难题。我把这个信条称作无穷原则。
莱布尼茨与牛顿被认为各自独立提出了微积分的思想
无穷原则从一开始就存在:它在阿基米德关于曲线形状的著作中,它在科学革命中,它在牛顿的世界体系中,如今它在我们的家中、工作中和汽车里。它让GPS、手机、激光和微波炉的发明成为可能。美国联邦调查局用它压缩了数百万份指纹文件,阿兰·科马克用它创建了CT扫描理论,他们都通过重组简单部分(子波之于指纹文件,正弦波之于CT理论)的方法解决了难题。从这个角度看,微积分是用于研究任何事物——任何模式,任何曲线,任何运动,任何自然过程、系统或现象——的想法与方法的庞杂集合,这些事物的变化平稳而连续,符合无穷原则。该定义的范畴远远超出了牛顿和莱布尼茨的微积分,并囊括了它的子孙后代:多变量微积分,常微分方程,偏微分方程,傅里叶分析,复分析,以及高等数学中涉及极限、导数和积分的所有其他分支。由此可见,微积分还没有完结,它和以前一样求知若渴。
但我属于少数派,实际上,只有我一个人持这种观点。我数学系的同事并不认为上述一切都是微积分,他们的理由很充分:这太荒谬了。课程体系中有一半的课不得不重新命名,除了微积分1、微积分2和微积分3以外,还有微积分4直到微积分38,让人不明所以。于是,我们给微积分的每个分支都取了不同的名字,并模糊了它们之间的连续性。我们把微积分切分成可供使用的最小部分,这种做法虽然有些讽刺,但或许很恰当,因为微积分本身的信条就是把连续的事物切分成多个部分,使它们变得更易于理解。需要明确的一点是,我并不反对所有不同的课程名称。我想说的是,这种切分可能会误导我们,让我们忘记那些课程本就是微积分的一部分。我写作本书的目标是,将微积分作为一个整体呈现在你们面前,让你们感受它的美、统一和壮观。
那么,微积分会拥有什么样的未来呢?就像人们说的那样,预测总是很难,尤其是对未来的预测。但我认为,我们可以大胆地假设,未来几年围绕微积分可能有几个重要趋势,包括:
微积分在社会科学、音乐、艺术和人文领域的新应用;
微积分在医学和生物学领域的持续应用;
应对金融、经济和天气固有的随机性;
微积分为大数据服务,反之亦然;
非线性、混沌和复杂系统的持续挑战;
微积分与计算机(包括人工智能)之间不断演化的合作关系;
将微积分推广至量子领域。
我们需要探讨的内容有很多,与其对这里提到的每个主题都说上几句,不如专注于其中几个问题。在简要地介绍DNA(脱氧核糖核酸)的微分几何(曲线之谜与生命的奥秘在此相遇)之后,我们将研究一些能让你获得哲学启发的案例,其中包括混沌、复杂性理论,以及计算机和人工智能的崛起带来的洞察力及预测方面的挑战。然而,为了弄明白这些案例,我们需要回顾一下非线性动力学的基本原理,这有助于我们更好地理解接下来将要面临的挑战。
DNA的缠绕数
传统上,微积分一直应用于像物理学、天文学和化学这样的“硬”科学。但近几十年来,它进入了生物学和医学领域,在流行病学、种群生物学、神经科学和医学成像等方面发挥着作用。在本书中,我们已经看到了不少数学生物学的例子,比如,利用微积分预测面部手术的结果,为HIV与免疫系统的战斗过程建模,等等。但所有这些例子都与变化之谜(关于微积分的最新困扰)的某个方面有关。相比之下,下面这个例子来自古老的曲线之谜,一个关于DNA的三维路径的谜题为它赋予了新的生命。
这个谜题与DNA在细胞中的“打包”方式有关,DNA是一种超长分子,包含了一个人成长发育所需的全部遗传信息。在你的大约10万亿个细胞中,每个都含有约2米长的DNA。如果将它们首尾相连,那么DNA可以在地球和太阳之间往返几十次。不过,怀疑论者可能会辩称,这种比较并不像听上去那么令人印象深刻,它只是反映了我们每个人都有很多细胞。而与DNA所在细胞的细胞核比大小,或许更能说明问题。一个典型的细胞核的直径约为5微米,它是细胞内DNA长度的40万分之一,这个压缩系数相当于把20英里长的绳子塞到一个网球里。
此外,DNA也不能被随意地塞入细胞核。它绝对不能缠绕在一起,而必须以有序的方式打包,这样DNA才能被酶读取,并被翻译成细胞维持生命活动所需的蛋白质。有序的打包方式还有一个重要作用,那就是当细胞分裂时DNA可以被整齐地复制。
进化用线轴解决了打包问题,当我们需要存放一根很长的线时也会采取相同的方法。细胞中的DNA缠绕在分子线轴上,这些线轴由一种叫作组蛋白的特殊蛋白质组成。为了实现进一步压缩,线轴会像项链上的珠子一样首尾相连,然后这条“项链”会盘绕成绳索状纤维,这些纤维本身又会盘绕成染色体。最终,通过重重盘绕,DNA被压缩成足以放入狭窄细胞核的大小。
但线轴并不是大自然解决打包问题的原始解决方案。地球上最早的生物是没有细胞核和染色体的单细胞生物,就像今天的细菌和病毒一样,它们也没有线轴。在这种情况下,遗传物质是通过一种基于几何学和弹性的机制来压缩的。想象一下,你拉紧一条橡皮筋,用手指夹住它的一端,并从另一端扭转它。刚开始,橡皮筋的每次转动都会产生一个扭结。扭结不断增加,当累积的扭转超过临界值时,橡皮筋不再保持绷直状态,而会突然弯曲并盘绕在自己身上,仿佛在痛苦地扭动。最终,橡皮筋聚成一团,实现了压缩。DNA也是这样做的。
环状DNA分子的超螺旋化
这种现象被称为超螺旋化,它普遍存在于DNA的环状结构中。尽管我们倾向于把DNA描绘成两端开放的直螺旋,但在许多情况下,它会自我闭合成一个环。当这种现象发生时,就好比解开你的安全带,把它扭曲几圈再扣上一样。此后安全带的扭曲次数就不变了——它被锁定了。在不解开安全带的前提下,如果你试图在某一处扭曲它,其他地方就会形成反向扭曲来抵消这种操作。其中,有某个守恒定律在起作用。
当你把花园用的软管盘绕成好几圈堆在地上时,也会发生同样的事情。而当你试图把软管直直地拉出来时,它会在你的手里扭曲。就这样,盘绕转变成扭曲。这种转换也可以反向进行,即从扭曲变为缠绕,就像橡皮筋在扭曲时发生了缠绕一样。原始生物的DNA正是利用了这种缠绕作用,某些酶可以切割DNA,扭曲它,再把它闭合起来。当DNA为了降低其能量而放松扭曲时,守恒定律就会迫使它的超螺旋化程度增强,让它变得更紧凑。这样一来,DNA分子的最终路径不再位于一个平面内,而是在三维空间中缠绕。
20世纪70年代初,美国数学家布洛克·富勒率先做出了关于DNA的三维缠绕现象的数学描述。他发明了一个叫作DNA缠绕数的量,用积分和导数推导出它的公式,证明了关于它的某些定理,从而明确了针对螺旋和缠绕的守恒定律。此后,关于DNA的几何学和拓扑学研究成为一个蓬勃发展的产业。数学家已经利用纽结理论和缠结微积分阐明了某些酶的作用机制,这些酶可以扭曲或切割DNA,或者将结与链引入DNA。由于这些酶改变了DNA的拓扑结构,因此被称为拓扑异构酶。它们可以弄断和再连接DNA链,对细胞的分裂和生长起到至关重要的作用。经证实,它们是癌症化学治疗药物的有效靶点。尽管其作用机制尚不清楚,但人们认为,这些药物(被称为拓扑异构酶抑制剂)通过阻断拓扑异构酶的作用,可以选择性地损坏癌细胞的DNA,导致癌细胞自杀。这对患者来说是好消息,对肿瘤来说则是坏消息。
在将微积分应用于超螺旋DNA时,双螺旋被建模为一条连续曲线。微积分一如既往地喜欢处理连续对象,但事实上,DNA是一群离散的原子,它没有什么地方是真正连续的。但是,为了得到好的逼近,DNA可被看作像理想的橡皮筋一样的连续曲线。这样做的好处是,微积分的两个副产品——弹性理论和微分几何学——可用于计算当DNA受到来自蛋白质、环境及与自身相互作用的力时,它会如何变形。
更重要的一点是,微积分延续了它一贯的创造性,将离散对象当作连续体来处理,从而揭示它们的行为。这种模拟尽管是近似的,但却很有用。无论如何,这都是我们唯一的选择。没有连续性假设,就无法使用无穷原则。没有无穷原则,就不会有微积分,也不会有微分几何和弹性理论。
我希望,未来我们将看到更多将微积分和连续数学应用于天生离散的生物学“角色”的例子,比如基因、细胞、蛋白质和生物学“大戏”中的其他“演员”。我们能从连续体近似方法中获取的洞见实在太多了,以至于不能不用它。除非我们开发出一种新的微积分形式,它可以像传统微积分适用于连续系统那样适用于离散系统,否则无穷原则将在生物的数学建模方面继续指导我们。
决定论及其局限性
接下来我们要谈论的两个话题是:非线性动力学的兴起和计算机对微积分的影响。我之所以选择这两个问题,是因为它们的哲学内涵十分有趣。它们可能会永远地改变预测的本质,并开启微积分(更一般地说是科学)的新时代,到那个时候,人类的洞察力或许会开始衰退,但科学本身仍将继续前行。为了阐明我的这句有些许末日警告意味的话是什么意思,我们需要理解预测到底为什么可行,它的经典含义是什么,以及我们的经典观念在过去几十年里,是如何被非线性、混沌和复杂系统研究所取得的发现修正的。
19世纪早期,法国数学家和天文学家皮埃尔–西蒙·拉普拉斯把牛顿的机械宇宙决定论推至它的逻辑极限。拉普拉斯设想了一个全知全能的智慧生物——拉普拉斯妖,它可以追踪宇宙中所有原子的所有位置,还有作用于它们的所有力。“如果这个智慧生物也能对这些数据进行分析,”他写道,“那就没有什么是不确定的了,未来也会像过去一样呈现在它眼前。”
随着20世纪的临近,这种对机械宇宙的极端表述在科学和哲学上似乎都开始站不住脚了。其中一个原因来自微积分,为此我们要感谢索菲·柯瓦列夫斯卡娅。柯瓦列夫斯卡娅出生于年,在莫斯科的一个贵族家庭长大。11岁时她发现自己被微积分包围了,她卧室的一面墙上贴满了她父亲年少时记下的微积分课程笔记。柯瓦列夫斯卡娅后来写道,她“在那面神秘的墙旁度过了童年时光,尝试通过理解其中的每一句话,找出页与页之间的正确顺序”。后来,她成为历史上第一位获得数学博士学位的女性。
尽管柯瓦列夫斯卡娅很早就表现出数学方面的天赋,但俄罗斯的法律不准许她上大学。她选择了一段形式婚姻,尽管这在随后的几年里令她心痛,但至少允准她去德国,她卓越的天分给那里的几位教授留下了深刻印象。然而,即使在德国,柯瓦列夫斯卡娅也无法光明正大地去上课,只能私下跟着分析家卡尔·魏尔斯特拉斯学习。在魏尔斯特拉斯的推荐下,柯瓦列夫斯卡娅因为解决了分析学、动力学和偏微分方程方面的几个突出问题而被授予博士学位。她最终成为斯德哥尔摩大学的一名教授,执教8年后死于流感,终年41岁。年,诺贝尔文学奖得主艾丽丝·门罗发表了一篇关于柯瓦列夫斯卡娅的短篇小说《幸福过了头》。
柯瓦列夫斯卡娅的关于决定论局限性的见解,源于她对刚体动力学的研究。刚体是针对不能弯曲或变形的物体的一种数学抽象,它的所有点都刚性地连接在一起。陀螺就是一种刚体,它非常坚固,由无穷多个点组成,所以陀螺是比牛顿研究的单点状粒子更复杂的机械对象。在天文学和空间科学中,刚体的运动对于描述从土卫七(土星的一个土豆状的小卫星)的混沌翻滚到太空舱或卫星的规律旋转等现象都具有重要意义。在研究刚体动力学时,柯瓦列夫斯卡娅得出了两个重要结果。一个重要的结果是,她全面分析和解决了陀螺的运动问题,这与牛顿解决二体问题具有同等重要的意义。尽管另外两个这样的“可积陀螺”早已为人所知,但她研究的这个更加精妙和令人吃惊。
俄罗斯数学家柯瓦列夫斯卡娅(-),对刚体旋转有深入研究。她是第一位获得数学博士学位、第一位获得大学教授职位的女性
另一个重要的结果是,她证明了不可能存在其他可解陀螺。她发现的正是最后一个,而余下的陀螺都是不可解的,这意味着它们的动力学问题也不可能用牛顿式公式来解决。这不是一个智力不足的问题,而只是证明了根本没有能描述所有陀螺运动的特定类型的公式(时间的亚纯函数)。就这样,她限定了微积分的适用范围。一个陀螺即可挑战拉普拉斯妖,从原则上说,找到关于宇宙命运的公式也无望了。
非线性
索菲·柯瓦列夫斯卡娅发现的不可解性与陀螺方程的一个结构特性有关,即该方程是非线性的。我们在这里无须